• 集团首页
  • 办公信息
  • 邮箱
  • 网站后台
  • English

学术报告《 Generator Polynomials of Cyclic Expurgated or Extended Goppa Codes》《New Constructions of Reversible DNA Codes》《Cooperative Repair of Reed-Solomon Codes via Linearized Permutation Polynomials》

发布日期:2024/04/17 点击量:

报告人:岳勤、刘宏伟、徐敬可

报告地点:淦昌苑D座320

报告时间:2024-04-21 9:00-12:00


报告一:Generator Polynomials of Cyclic Expurgated or Extended Goppa Codes

报告人:岳勤

报告摘要:

Classical Goppa codes are a well-known class of codes with applications in code-based cryptography, which are a special case of alternant codes. Many papers are devoted to the search for Goppa codes with a cyclic extension or with a cyclic parity-check subcode. Let $\Bbb F_q$ be a finite field with $q=2^l$ elements, where $l$ is a positive integer. In this talk, we determine all the generator polynomials of cyclic expurgated or extended Goppa codes under some prescribed permutations induced by the projective general linear automorphism $A \in PGL_2(\Bbb F_q)$. Moreover, we provide some examples to support our findings.

报告人简介:

岳勤,南京航空航天大学数学系教授,博士生导师。1996-1999中国科技大学数学系,博士,导师冯克勤教授,并获得中国科学院研究生经理优秀奖学金。2000年1月-2002年1月,进入复旦大学数学所做博士后。主要研究方向为代数数论、代数K理论和代数编码密码理论,发表SCI论文100余篇,其中包括:J. Reine Angew. Math., Math. Z, IEEE Trans. Inform. Theory等刊物;多次获批科研基金项目,其中主持国家自然科学基金面上项目5项和国际合作项目2项。曾多次被邀请在国内外重要数学会议上做一小时学术报告;受邀出境访学十余次,先后访问台湾中央研究院数学所,意大利物理中心、台湾大学数学所、韩国高级科学技术学院,香港大学等地。


报告二:New Constructions of Reversible DNA Codes

报告人:刘宏伟

报告摘要:

DNA codes have many applications, such as in data storage, DNA computing, etc. Good DNA codes have large sizes and satisfy some certain constraints. In this talk, we present a new construction method for reversible DNA codes. We show that the DNA codes obtained using our construction method can satisfy some desired constraints and the lower bounds of the sizes of some DNA codes are better than the known results in the literature. We also give new lower bounds on the sizes of some DNA codes of lengths $80$, $96$ and $160$ for some fixed Hamming distance $d$.

报告人简介:

刘宏伟,现任华中师范大学数学与统计学学院教授,博导,主要从事代数编码的研究和教学工作。现兼任中国工业与应用数学学会第八届理事会理事,中国工业与应用数学学会编码密码及相关组合理论专业委员会委员。2003年研究生毕业于武汉大学基础数学专业,获理学博士学位。2001年5月至今在华中师范大学工作。曾先后应邀访问美国斯克兰顿大学、肯特州立大学、俄亥俄大学、新加坡南洋理工大学、香港科技大学等海外高校进行学术交流。2014年8月受邀访问韩国梨花女子大学参加ICM代数编码卫星会议并做邀请报告,2019年6月受邀参加在北京举办的第八届ICCM会议并做45分钟邀请报告,2023年8月受邀访问韩国庆北大学参加ICIAM编码理论及其应用卫星国际会议并做邀请报告。主持和参与国家自然科学基金多项,973子项目1项,教育部留学回国人员科研启动基金1项。目前在包括IEEE Trans. Inf. Theory, Des. Codes Cryptogr., Finite Fields Appl., Discrete Math., Sci. China Math., Cryptogr. Commun.等国内外知名期刊发表相关研究论文60余篇. 合作编写编著教材、著作4部.


报告三:Cooperative Repair of Reed-Solomon Codes via Linearized Permutation Polynomials

报告人:徐敬可

报告摘要:

In distributed storage, cooperative repair is to simultaneously recover h (h>1) node erasures by downloading data from surviving nodes as well as collaboration between the h replacement nodes. In this work, we propose a generalized cooperative repair framework for Reed-Solomon (RS) codes with two erasures. The key idea is to construct parity-check polynomials for the two replacement nodes respectively and then reduce the repair problem to the design of a linearized permutation polynomial related to the parity-check polynomials. We provide constructions of the linearized permutation polynomial in several cases, leading to cooperative repair schemes accordingly. Compared with the schemes given by [Dau. et al. TIT 2021], our schemes retain the same repair bandwidth while apply to a much wider parameter regime and need only one-round collaboration.

报告人简介:

徐敬可博士,现就职于山东农业大学应用数学系,主要研究方向为保密信息提取、分布式存储编码及分布式计算,在相关领域的研究中取得了一系列重要的研究成果。 在IEEE Trans. Inf. Theory、IEEE Trans. Commun.、SCIENCE CHINA Information Sciences、Knowledge-Based Systems、ISIT等国际主流学术期刊(会议)发表科研论文十余篇。目前主持 1 项国家自然科学基金青年项目,1 项山东省自然科学基金青年项目,作为学术骨干参与 1 项国家自然科学基金面上项目以及 1 项山东省高等学校青年创新团队项目。


邀请人:方伟军

审核人:魏普文


联系我们

地址:山东省青岛市即墨区滨海路72号beat365官方入口青岛校区淦昌苑D座邮编:266237

邮箱:cst@sdu.edu.cn电话:(86)-532-58638601传真:(86)-532-58638633

版权所有 beat·365(中国)在线体育-官方网站